

JUMO IGBT Power Converter 200A with amplitude control

B 70.9050.0.2 Operating Manual

1	Contents	3
2	Introduction	5
2.1	Preface	5
2.2 2.2.1 2.2.2 2.2.3	Typographical conventions Warning signs Note signs Performing an action	6
2.3 2.3.1 2.3.2 2.3.3	Order details Standard accessories Required accessories Further accessories	8
2.4	Brief description	10
2.5	Interpretation of the LEDs	11
3	Installation	13
3.1 3.1.1	Important notes on installation Correctly wire all components	
3.2	Filtering and interference suppression	16
3.3	Ambient conditions	18
3.4 3.4.1	Spacings Opening the housing	
4	Electrical connection	23
4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	Screw connections in the power section Suitable cables and cross-sections Electrical isolation Use of residual current protection devices Replacing the two semiconductor fuses Wiring of the screw terminals	25 26 26 27
5	Settings	31
5.1	Operating principle	31
5.2	Setting switches S101, S103, S104, S105, S106 and X106	32
5.3	Subordinate control loop	33
5.4	Load voltage adjustment	33
5.5 5.5.1	Control inputs Combination of external potentiometer and electronic controller	
5.6	Firing pulse inhibit	36

5.7	Resistance output	36
5.8	Trimmer settings	
5.8.1	Resistance limiting (R-control)	
5.8.2	SIC voltage reserve (SIC reserve)	
5.8.3	Control input adjustment (max. Power adjust)	
5.8.4	Setting for maximum power (max. Power adjust)	
5.8.5	Input signal attenuation	39
5.9	Setting the base load (min. Power adjust)	39
5.10	Setting the current limit (max. current adjust)	40
5.11	Total and partial load failure monitoring (load fail adjust)	40
5.11.1	Setting the load fault indication	
5.12	Safety cut-out in the power section (IGBT)	43
5.13	Adjusting the output level signal (output adjust U^2 , P , I^2)	43
6	Technical data	45
6.1	Voltage supply	45
6.2	Control	
6.3	Fault signal output	45
6.4	General characteristics	45
6.5	Choke data	47
6.6	EMC filter	47
7	Troubleshooting	49

2.1 Preface

Please read this operating manual before commissioning the instrument. Keep the operating manual in a place accessible to all users at all times.

Please assist us in improving this operating manual.

Your comments are highly appreciated.

Phone: +49 661 6003 -727 Fax +49 (0)661 6003-508

The IPC must only be used with the original JUMO choke and an original JUMO supply filter.

Please check that the chosen supply filter is adequate for the maximum current drawn from the electrical supply to avoid it from being overloaded.

Should difficulties arise during start-up, please do not carry out any unauthorized manipulations. This could lead to you losing your warranty rights!

Please contact the nearest subsidiary or the head office.

Service hotline

For technical questions

Phone support in Germany:

Phone: +49 (0)661 6003-300 or -653 or -899

Fax: +49 661 6003 -881729 E-mail: service@jumo.net

Austria:

Phone: +43 1 610610 Fax: +43 1 6106140 E-mail: info@jumo.at

Switzerland:

Phone: +41 1 928 24 44 Fax: +41 1 928 24 48 E-mail: info@jumo.ch

When accessing the inner parts of the unit, please observe the regulations according to DIN EN 61340-5-1 and DIN EN 61340-5-2 "Protection of electrostatic sensitive devices". Only use **ESD** packaging for transport.

Please note that we cannot accept any liability for damage caused by ESD.

ESD=Electro Static Discharge

2.2 Typographical conventions

2.2.1 Warning signs

Danger

This symbol is used when there may be **danger to personnel** if the instructions are ignored or not followed correctly!

Caution:

This symbol is used when there may be **damage to equipment or data** if the instructions are ignored or not followed correctly!

ESD

This symbol is used where special care is required when handling components liable to damage through electrostatic discharge.

2.2.2 Note signs

Note

This symbol is used when your **special attention** is drawn to a remark.

Reference

This symbol refers to **further information** in other manuals, chapters or sections.

Footnote

abc¹

Footnotes are remarks that **refer to specific points** in the text. Footnotes consist of two parts:

A marker in the text and the foot note text itself.

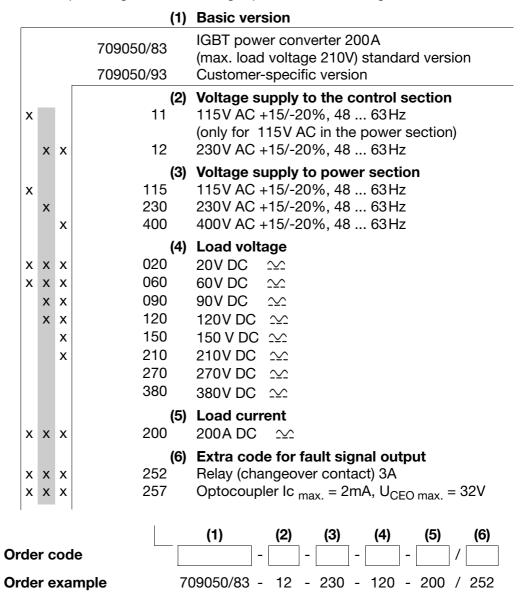
The markers in the text are arranged as continuous superscript numbers.

2.2.3 Performing an action

Action instruction

* Plug in the This symbol indicates that an **action to be performed** is connector described. The individual steps are marked by this asterisk.

Vital text



This text contains important information, and it is vital that you read it before going any further.

2 Introduction

2.3 Order details

The nameplate is glued onto the right panel of the housing.

2.3.1 Standard accessories

1 Operating Manual

2.3.2 Required accessories

Choke: L = 0.6mH/I_{Nom} = 200A, protection rating IP 20, as per EN 60 529

Dimensions	Connection	Tightening torque for screw terminals	Weight	Sales No.
Height: 190 mm Width: 200 x 385 mm	Via screw terminals from 35 to 95 mm ²	max. 1520 Nm	approx. 37kgs	70/00436848

2.3.3 Further accessories

EMC filter

For voltage supply to power section						
Nominal voltage, nominal current	Dimensions (L x W x H)	Tightening torque for screw terminals	Weight	Permissi ble ambient temperat ure	Sales No.	
115V/250V/440V AC, I _{Nom} = 16A	(255 x 60 x 130) mm	0.6 0.8 Nm	approx. 4kgs	40°C	70/00399527	
115V/250V/440V AC, I _{Nom} = 20A	(289 x 70 x 140) mm	1.5 1.8 Nm	approx. 5.5 kgs	40°C	70/00438775	
115V/250V/440V AC, I _{Nom} = 32A	(324 x 90 x 160) mm	1.5 1.8 Nm	approx. 9.5kgs	40°C	70/00409831	
115V/250V/440V AC, I _{Nom} = 63A	(380 x 117 x 190) mm	2 2.3 Nm	approx. 17kgs	40°C	70/00409990	
115V/250V/440V AC, I _{Nom} = 100A	(445 x 150 x 220) mm	6 8 Nm	approx. 26 kgs	40°C	70/00431997	
For voltage supply to the control section						
115V/250V AC, I _{Nom} = 1A	80 x 45 x 30 mm	-	approx. 120g	40°C	70/00413620	

Semiconductor fuse

2 extra fast semiconductor fuses are installed in the converter, to protect the IPC in the event of an earth short.

The I^2t value of the semiconductor fuse must be less than 20000 $A^2s!$ Sales No. 70/00434229

2 Introduction

2.4 Brief description

Instrument The JUMO IPC is a IGBT power converter for controlling heater loads that

previously required a transformer (either a variable transformer or a

combination of transformer and thyristor power unit).

Its function is that of an electronic transformer with a pulsed DC output.

Advantages

It combines the advantages of a conventional variable transformer, such as amplitude control which is the sinusoidal current loading, with the advantages of a thyristor power switch, such as current limiting, load monitoring, subordinate control action, etc.

(an

There is no electrical isolation between the voltage supply and the load voltage.

Application

This power converter is employed wherever large resistive loads need to be switched and no electrical isolation is required between the supply voltage and the load voltage. Thanks to the amplitude control (the current drawn from the supply is always sinusoidal), synchronous clock controls (as for burst-firing operation) and power-factor compensation networks (for the reactive power resulting from phase-control) are no longer required.

2.5 Interpretation of the LEDs

fuse

Two semiconductor fuses are integrated in the IPC, to protect it in the event of an earth short. If an earth short occurs, one or both of the semiconductor fuses will trip. Tripping of one or both of the fuses is indicated by the "Fuse" LED and the drop-out of the fault signal relay.

⇒ Chapter 4.1.4 "Replacing the two semiconductor fuses"

overheat

This LED lights up if the maximum permitted temperature is exceeded. The fault signal relay drops out at the same time.

The load output remains disconnected until the temperature has fallen below the limit value again.

⇒ Chapter 3.3 "Ambient conditions"

IGBT

This LED lights up when the electronic safety cut-out of the load circuit has tripped.

(e.g. because of a wiring fault).

The safety cut-out remains activated until the IPC has been completely (all-pole) disconnected from the supply and then switched on again. The fault signal relay drops out at the same time.

⇒ Chapter 5.12 "Safety cut-out in the power section (IGBT)"

current limit

This LED lights up if the converter is working at the current limit.

⇒ Chapter 5.10 "Setting the current limit (max. current adjust)"

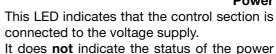
load fail

This LED lights up if a total or partial load failure has been detected.

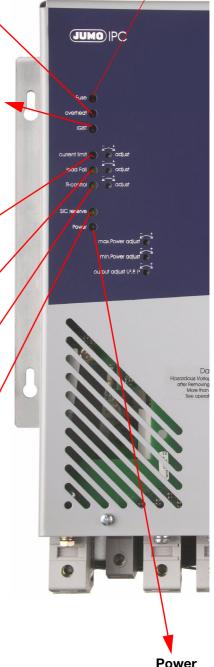
The fault signal relay drops out at the same time.

⇒ Chapter 5.11 "Total and partial load failure monitoring (load fail adjust)"

R-control


This LED lights up if the converter is working at the resistance limit.

⇒ Chapter 5.8.1 "Resistance limiting (R-control)"


SIC reserve

This LED lights up when the IPC has reached its max. load voltage, so there is no longer automatic compensation for ageing at SIC load. The fault signal relay drops out at the same time.

⇒ Chapter 5.8.2 "SIC voltage reserve (SIC reserve)"

section!

2 Introduction

3.1 Important notes on installation

Safety regulations

- The choice of cable, the installation and the electrical connection of the instrument must conform to the requirements of VDE 0100 "Regulations on the Installation of Power Circuits with Nominal Voltages below 1000 V AC" or the appropriate local regulations.
- The electrical connection must only be carried out by qualified personnel.
- An isolation switch should be wired between the supply and the converter to be able to disconnect the converter from the voltage supply on all poles prior to starting internal work.

Caution!

The converter has 2 power supplies (to the control section and to the power section). Disconnect both supplies (all poles) prior to starting work on the converter.

Allow 1 minute to elapse after switching off prior to starting work on the converter, since potentially fatal voltages could be present in the converter interior and at the terminals.

■ Inside the converter, safety gaps meet the requirements for double insulation.

When installing the connecting cable, ensure that the cables are fitted according to regulations and that the safety gaps are maintained.

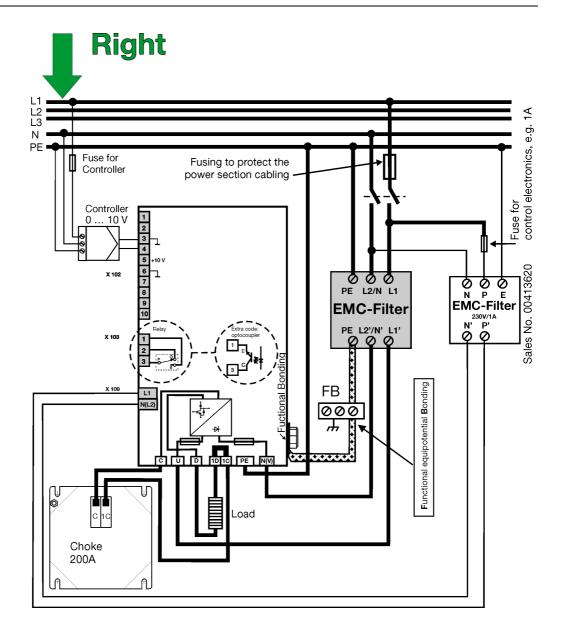
Electrical supply types

The IPC is suitable for operation with TN and TT supply networks.

* Carry out installation in accordance with EN 50178.

Fuse protection

- Fuse protection in accordance with the VDE regulations must be installed for the voltage supply to the power section. The supply protection can also be achieved by a circuit-breaker in the supply lead. This must be dimensioned for the power consumption of the power converter and the rated current of the downstream EMC filter.
- Two semiconductor fuses are incorporated to protect the IPC in the event of an earth short.


 (The I²t value of the semiconductor fuse must be smaller than 20000 A²s)!
- ⇒ Chapter 4.1.4 "Replacing the two semiconductor fuses"
- Provide an appropriate control circuit fuse for **control section lead protection**. The control section consumes approx. 75 VA.

3.1.1 Correctly wire all components

EMC filter

The IPC may only be used in conjunction with a suitable filter (accessories). If a different filter is used, it must be of equal or better characteristics. Otherwise, inductive voltages may be introduced into the supply network. We decline any liability for damage caused as a result.

The EMC filters may only be used for interference suppression of the IPC power converter. Other devices, such as controllers, power supplies etc. must be suppressed, where necessary, with their own EMC filters. Do not wire these devices in parallel to the IPC power converter on the load side of the EMC filter.

The earth leakage current of the IPC power converter with a filter wired into the supply lead is less than 3 mA. If the load conditions result in an earth leakage current greater than 3.5 mA, a fixed supply connection is required as a protection against hazardous potentials (also see EN 50178).

Electromagnetic compatibility conforms to the standards and regulations cited in the technical data.

- ⇒ Chapter 6 "Technical data"
- * Load wiring (thick) and cables for control inputs (thin) should be routed separately, if possible.

Positioning of the choke

* The choke should be installed close to the converter.

Connection

- * Check the data given on the nameplate (voltage supply to the control section, voltage supply to the power section, load voltage and load current) against the system data.
- ⇒ Chapter 2.3 "Order details"
- * Check the adaptation of the setpoint inputs.
- * Check the switch settings.

PE connection/ FB connection

- * Provide a direct connection between the PE of the IPC and the PE of the supply network. Connect to the PE terminal of the IPC.
- * If necessary, interference emission of the IPC can also be minimised by a function equipotential bonding. The function equipotential bonding is connected to the FB terminal of the IPC.
- ⇒ Chapter 3.1.1 "Correctly wire all components"

Choke connection

* The choke is connected to terminals C and 1C.

Voltage supply

- * Connect the voltage supply to the control section to terminals L1 and N(L2) (X109).
- * Connect the voltage supply of the power section to terminals U and N(V).

An isolation switch should be wired between the supply and the converter to be able to disconnect the converter from the voltage supply on all poles prior to starting internal work!

The connection must only be carried out by qualified personnel!

Load connection

- * The load is connected to terminals D and 1D.
- * The cable between the load and the IPC should be as short as possible and not exceed 50 m.

Use a shielded cable to connect to the load, ensure that the shielding is connected to earth on both ends.

- ⇒ Chapter 3.2 "Filtering and interference suppression"
 Choosing the suitable cables
- ⇒ Chapter 4.1.1 "Suitable cables and cross-sections"

Control inputs

The terminal strip for control connections (inputs and outputs) have been laid out for safe isolation from the supply (SELV). To prevent the safe isolation from being impaired, ensure that all connected current circuits are also safely isolated. The required auxiliary supplies must be SELV voltages.

3 Installation

Switch-on sequence

The voltage supplies to the control section and to the power section must be switched on simultaneously.

Under no circumstances may the voltage supply to the control section be switched on before the load voltage. This is especially important when operating resistive loads that have a high hot/cold resistance ratio.

3.2 Filtering and interference suppression

System

Compliance with the EMC standards can only be achieved through additional EMC measures.

These include:

- a supply filter in the voltage supply
- a shielded cable for the voltage supply (from the supply filter (load) to the IPC)
- a shielded cable to the load

Compliance with the EMC standards must be tested for the overall system.

Construction

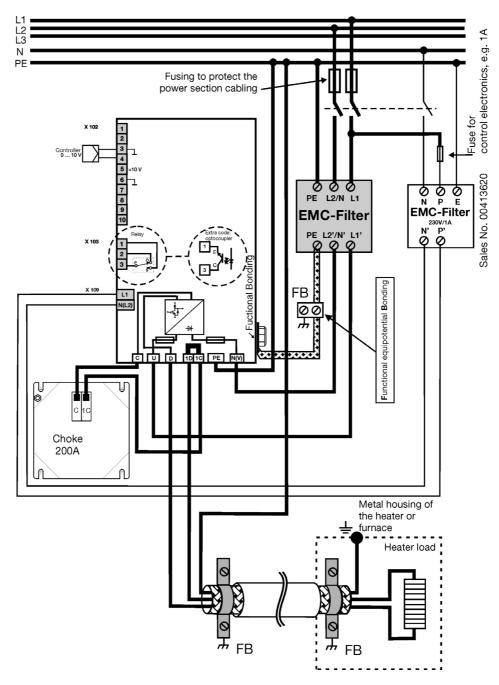
To keep interference emission through conducted and radiated interference below the permissible levels defined in the pertinent EMC standards, constructive measures must be taken in the installation and wiring stages in addition to supply input filtering. Poor earth connection or shielding of the EMC filter will reduce the effectiveness of the interference suppression measures.

The following points should be noted in order to achieve good configuration for EMC purposes:

- * All metallic components of the converter or cabinet must be well bonded for HF currents over a large surface area.
- * The EMC filter should be installed close to the IPC, if possible, on a common metal plate. Route cables for control inputs and signal cables as far apart from each other as possible, and use shielded cables.
- * If possible, do not route power cables in the same cable duct as control or signal cables.
- * The cable between the load and the IPC should be as short as possible and not exceed 50 m.

Earthing

The base plate, the supply filter and the shielding of the supply cable must be earthed to a star point using HF braiding.


Choosing a suitable cable

■ If the cable between the filter and the IPC is longer than 300 mm, we recommend to use a shielded cable with the shielding earthed at both ends. Route cables inside the switch cabinet as close as possible to grounded surfaces, otherwise they can act as antennae and radiate interference.

- To achieve a good shielding effect for the cable, only use cables that have shielding made with tinned or nickel-plated copper braiding. The coverage of the shielding should be at least 70%; the lay angle should be 90°. Screens made of steel braiding are not suitable. Earth the shielding of the load cable on both ends.
- The shielding of the control inputs must only be earthed at one end (IPC side). If potential differences exist, install an additional equipotential bonding conductor.

EMV compliant design

The user/owner is responsible for compliance of the specific application with the EMC directive. The diagram below illustrates such a design for type 709050/X3-12-400-XXX-200/XXX with a **Phase** / **Phase** supply configuration.

3 Installation

3.3 Ambient conditions

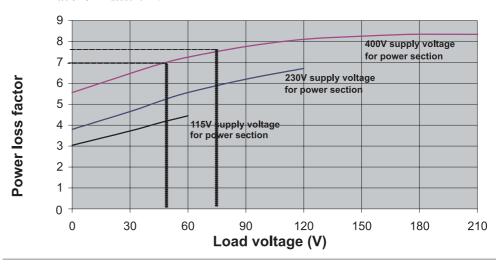
Misuse

The instrument is not suitable for use in areas with an explosion hazard (Ex areas).

Mounting site

The installation site should be free from vibration, dust and corrosive media.

Climatic conditions


- Relative humidity: 5...85 % no condensation (3K3 as per EN 60721)
- Max. air inlet temperature 35°C
- Ambient temperature range: 5 ... 40 °C (3K3 as per EN 60721)
- Storage temperature range: -10...70 °C
- The cable between the load and the IPC should be as short as possible and not exceed 50 m.

Power loss

Power loss occurs in the form of thermal discharge at the cooling body of the power converter and has to be discharged at the place of installation (e.g. in the switch cabinet) in accordance with the climatic conditions.

Power loss for IPC 200A, incl. choke and supply filter

 P_{tot} (W) = I_{Load} (A) x power loss factor

Example of the Molybdenum Disilicid heating elements

IPC type: 709050/83-12-400-90-200/252

Load voltage = 90V Load current = 200A

Voltage supply to the power section = 400V

Resistive loads and Molybdenum Disilicid heating elements:

Heating element data: Load voltage = 75V; load current = 130A

* Determine the max. load voltage actually taken (e.g. 75V) and find the point intersecting with the curve for the voltage supply in the power section. The Y axis shows the attendant power loss factor of, e.g., 7.5.

The power loss (W) is obtained by multiplying this power loss factor by the load current (e.g. 130A) that flows through the load resistor at max. load voltage (e.g. 75V)

Power loss = 130(A) x power loss factor

Power loss = $130(A) \times 7.5 = 975W$

Example of the SIC heating elements

IPC type: 709050/93-12-400-90-200/252

Load voltage = 90V Load current = 200A

Voltage supply to the power section = 400V

P control, P = 9000W

SIC heating elements

SIC heating element data: new: 45V/200A, old 90V/100A; P = 9000W

* Determine the maximum load voltage actually taken (e.g. 45V) of the new SIC heating element and find the point intersecting with the curve for the voltage supply in the power section. The Y axis shows the attendant power loss factor of, e.g., 6.8.

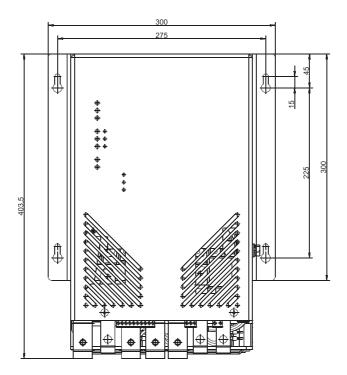
The power loss (W) is obtained by multiplying this power loss factor by the load current (e.g. 200A)

that flows at max. load voltage (e.g. 45V) through the new SIC heating element

Power loss = 200(A) x power loss factor

Power loss = $200(A) \times 6.8 = 1360W$

Wall fixing


* Use 4 hexagonal M6 bolts (at least quality 8.8) to fix the converter vertically on a heat-resistant switch cabinet back panel.

The temperature of the air drawn in through the ventilation grille must not exceed 35° C. Ensure that the inlet air for the built-in ventilators can be taken in from below and escape at the top without obstruction!

Dimensions

Type 709050/X3...

Caution! Hot cooling body!

The cooling body can reach very high temperatures during operation!

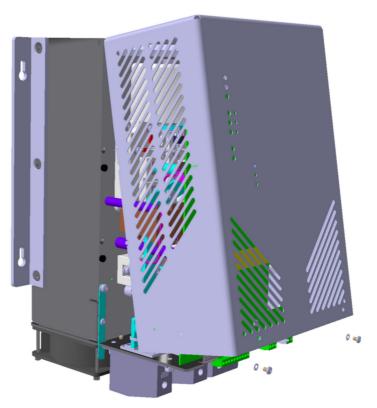
3.4 Spacings

- * Allow a clearance of 10 cm from the floor.
- * Allow a clearance of 15 cm from the ceiling.
- * When fitted next to each other, no spacing between the units is required.

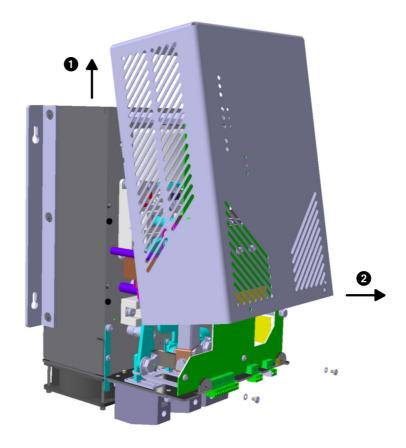
3.4.1 Opening the housing

Caution!

The converter has 2 power supplies (to the control section and to the power section). Disconnect both supplies (all poles) prior to starting work on the converter.


Allow 1 minute to elapse after switching off prior to starting work on the converter, since potentially fatal voltages could be present in the converter interior and at the terminals.

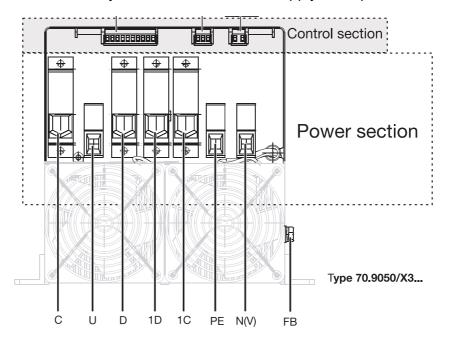
Caution! Hot cooling body!


- * Disconnect the built-in converter from the voltage supply on all poles
- * Wait for 1 minute
- * Check that no voltage is present
- * Undo the 2 screws from the bottom of the converter

* Swing up the housing cover from the bottom of the converter

* Lift the cover out of the groove 1 and take it off forward 2

4.1 Screw connections in the power section


Tool

- Screwdriver
- Allen key, width across flats 5 mm and 6 mm

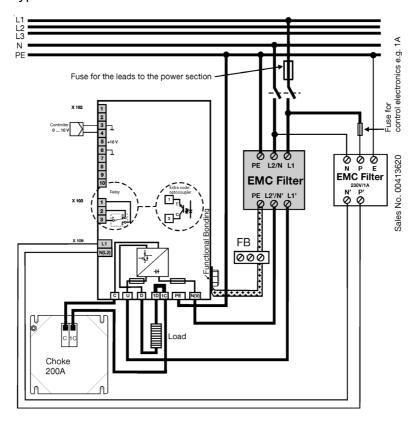
The electrical connection must only be carried out by qualified personnel!

* Disconnect the system from the electrical supply on all poles.

* Make the connections to the screw terminals only with cables that have a suitable cross-section and are fitted with cable lugs.

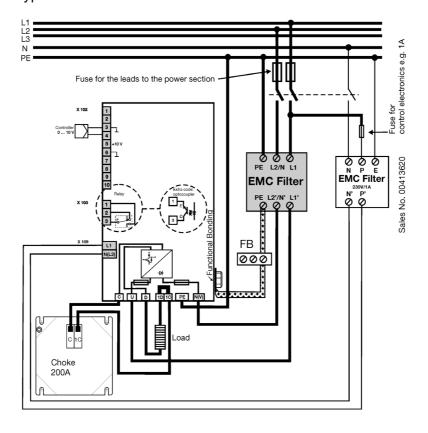
An Allen key, width across flats 5 mm, can be used to tighten the screws in the power section at a max. torque of 6-8 Nm.

Conductor cross section with cable lugs: 10 to 50mm²


An Allen key, width across flats 6mm, can be used to tighten the screws in the power section at a max. torque of 15-20Nm.

Conductor cross section with cable lugs: 35 to 95mm²

4 Electrical connection


Phase / N

The diagram shows the wiring for single-phase operation $\,$ **Phase / N** for type 709050/X3.

Phase / Phase

The diagram shows the wiring for single-phase operation **Phase / Phase** for type 709050/X3.

4.1.1 Suitable cables and cross-sections

PE conductor

The cross-section of the PE conductor must be at least as large as the cross-section of the voltage supply conductors to the power section. If the protective earth (PE) conductor is not part of the supply cable or its sheathing, the chosen conductor must have a cross-section of at least 2.5 mm² (if mechanically protected) or at least 4mm² (if the PE conductor is not mechanically protected).

⇒ see VDE 0100 Part 540

Control section

The screw terminals for the voltage supply to the control section are laid out for a conductor cross-section between $0.5~\mathrm{mm^2}$ and $2.5~\mathrm{mm^2}$. The minimum conductor cross-section must not be less than $0.5^2~\mathrm{mm}$. Fusing of the cable must correspond to the selected conductor cross-section.

Power consumption is approx. 75 VA.

Power section

The minimum conductor cross-section chosen must be adequate for the maximum conductor current. The electrical connection is made via screw terminals on the converter. We recommend the use of a shielded cable to reduce EMC interference emission.

⇒ Chapter 3.2 "Filtering and interference suppression" Choosing the suitable cables

The cable cross-section in the load and choke circuits must not be less than the cross-section of the supply leads to the power section!

Calculation formula

Example

$$I_{Supply} = \frac{3000 \text{ W (heater load)}}{230 \text{ V (voltage supply to the power section)}} + 2A =$$

$$I_{Supply} = 13A + 2A = 15A$$

4 Electrical connection

4.1.2 Electrical isolation

The control section, including the inputs and outputs, as well as all operator controls can be connected to SELV circuits.

The fault signal relay can be connected to SELV or supply potential, without prejudicing the electrical isolation arrangements of the other inputs and outputs.

There is no electrical isolation between the voltage supply of the power section and the load.

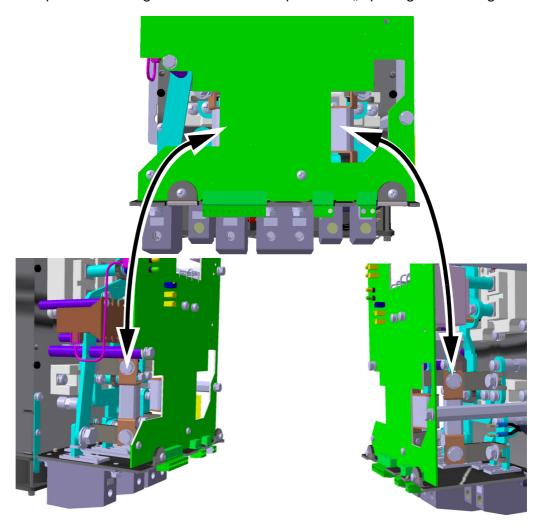
Ensure that the metal housing of the oven or combustion chamber is properly earthed.

⇒ Chapter 3.2 "Filtering and interference suppression" Installation must comply with EMC requirements.

4.1.3 Use of residual current protection devices

The converter is equipped with an internal input rectifier. A short to the housing can result in a residual DC current that blocks the tripping of the conventional residual current protection device. For this reason, any RCD used must be an "all-current sensitive" version of Type B.

When defining the trip current for the RCD, the leakage currents of the EMC filter caused by the Y capacitors (<3mA) as well as the capacitive currents from the cable shielding have to be taken into account.



See also EN 50178 (VDE 0160):

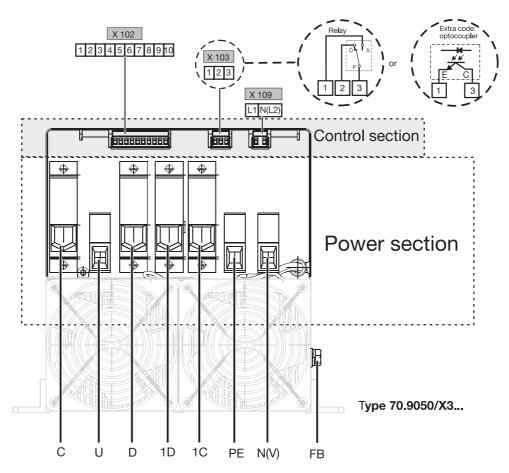
Protection of electrical equipment through residual current protection devices.

4.1.4 Replacing the two semiconductor fuses

- * Disconnect (all poles) the converter from the voltage supply.
- * Wait 1 minute to allow hazardous voltages to discharge.
- * Check that no voltage is present on the screw terminals.
- * Open the housing as described in Chapter 3.4.1 "Opening the housing".

- * Undo the 2 screws each for the left and right semiconductor fuse and take the fuse out of its holder.
- * Replace blown fuses with new ones and retighten the screws at a max. tightening torque of 20 Nm.
- * Remedy the cause that led to the semiconductor fuse tripping (e.g. earth short in the power section).
- **★** Only use original JUMO replacement parts, item No. 70/00434229.
- ⇒ Chapter 2.3.2 "Required accessories"

4 Electrical connection


4.1.5 Wiring of the screw terminals

Position

The following diagram shows the position of the screw connections in the power section, the screw terminals on the PCB as well as the general connection arrangement.

Only tighten the green screw terminals in the control section with a maximum tightening torque of 0.5 to 0.6 Nm!

	Connection for	terminal screw X109	Detail
(→)	Voltage supply Control section	L1	L1 0 L1
	Control section	N (L2)	N (L2) O N (L2)

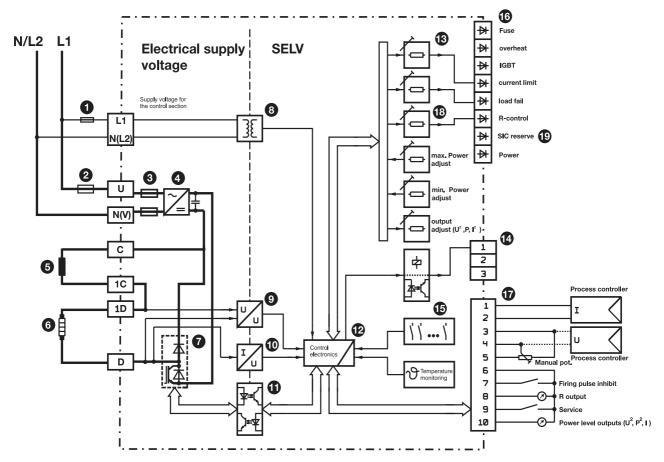
	Connection for	Screw connections in Power section	Detail
\rightarrow	Voltage supply to power section	U N(V)	L1 O U N (L2) O N (V)
	Protective earth	PE	PE o PE
	Functional equipotential bonding	FB	FB—−∘ FB
	⇒ Chapter 3.1.1 "Correctly wire all components"		

4 Electrical connection

	Choke connection	1C	0 1C
(→	С	∘ с
	Load connection	1D -	o 1D
		D +	o D

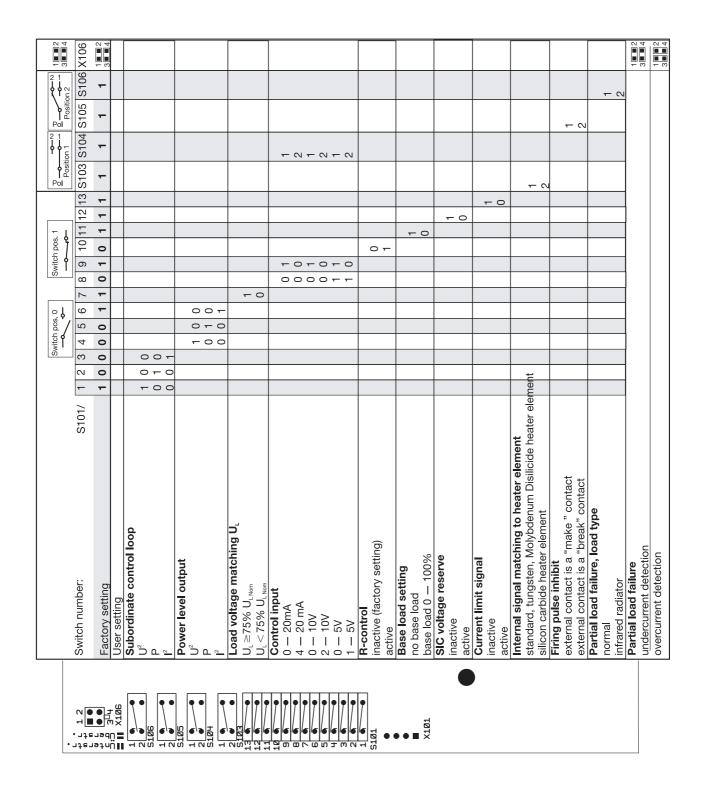
	Connection for	terminal screw X102	Detail
◆)	Current input (differential input)	1- 2+	-0 1 +D 0 2
	Voltage input (referred to ground)	3 ground 4+	0 3
	External manual adjustment Potentiometer 5 k Ω	3 Start (ground) 4 slider 5 end (+10V)	β 5kΩ 0 3 5kΩ 0 4 E 0 5
	Firing pulse inhibit (inhibit input) I _K approx. 1mA (break or make contact)	6 ground 7+	o- o- o 6 or o 7 or o- o 6 o 7
\rightarrow	Output level 0 to 10V (U ² , P, I ²) I _{max} approx. 2mA	10+ 6 ground	* 0 10 0 6
	Resistance output 0 to 5 V (R) I _{max} approx. 2mA	8 + 6 ground	• 0 8 • 0 6

	Connection for	Screw terminal X103	Detail
\rightarrow	Load fault output with relay contact rating 230V AC/3A resistive load relay drops out at fault	1 make contact 2 break contact 3 common	3 S S S S S S S S S
	Load fault output with optocoupler Ic _{max} = 2mA U _{CEO max} = 32 V	3 collector 1 emitter	



5.1 Operating principle

The JUMO IPC can be used wherever a transformer was previously used to reduce the voltage level.


It functions as an electronic transformer that produces a pulsed DC output.

Block diagram

- 1 Supply fuses for the control section
- 2 Supply fuses for the power section
- 3 Semiconductor fuses
- 4 Rectifier
- 5 Choke
- 6 Load
- 7 IGBT module
- 8 Supply voltage for the control electronics
- 9 Voltage converter
- 10 Current converter
- 11 Electrical isolation for control circuitry
- 12 Control electronics
- 13 Adjustable trimmers
- 14 Fault signal output via relay or optocoupler
- 15 Configuration switches
- 16 LED indicators
- 17 Set output level, control inputs, power level output signals
- 18 R-control
- 19 SIC reserve

5.2 Setting switches S101, S103, S104, S105, S106 and X106

5.3 Subordinate control loop

Subordinate control loops are primarily used to eliminate or compensate for external disturbances, such as fluctuations in the supply voltage and alterations in resistance that have a negative effect on the operation of the control loop.

Factory setting

A subordinate U² control loop is factory set, however, also the P or I² control loop is possible.

Control	Internal switch S101		h S101	Application
type	S1	S2	S3	
U ²	1	0	0	- positive TC, Molybdenum Disilicid
				- R ≈ constant - brightness controls
Р	0	1	0	- general application, required for SIC loads and automatic compensation for ageing.
l ²	0	0	1	- negative TC

factory setting

5.4 Load voltage adjustment

Switch S101-7 can be used to adjust the load voltage. If the max. load voltage required is less than 75% of the load voltage $U_{L\ Nom}$ as per type code, then S 101-7 must be opened.

If the maximum required load voltage is 75% or more of the nominal load voltage $U_{L\ Nom}$ as per type code, then S 101-7 must be closed.

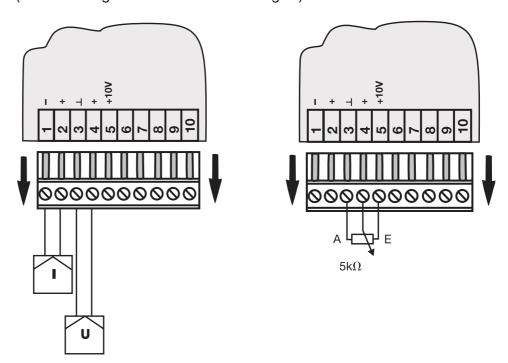
Factory setting

S101-7 is closed.

5.5 Control inputs

The internal switches S8, S9 and S104 are used to adapt the converter to the available control signal (controller output signal).

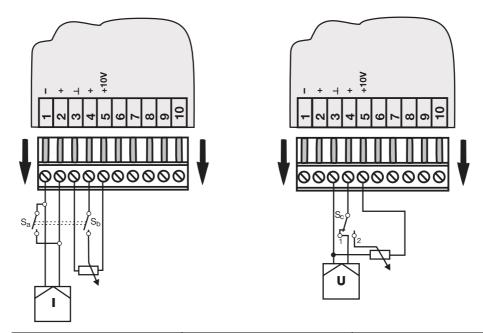
The voltage and current inputs are separated from one another. The current inputs (+,-) are arranged as differential inputs, i. e. they can have a maximum common mode voltage of 7V with respect to the common ground potential (\bot) . If the current and voltage inputs are used at the same time, their effect will be cumulative.


Control signal	Internal s	witches		
Signal start	Signal end	S8	S9	S104
0 mA	20 mA	0	1	1
4 mA	20 mA	0	0	2
0 V	10 V	0	1	1
2 V	10 V	0	0	2
0 V	5 V	1	1	1
1 V	5 V	1	0	2

factory setting

Analog control inputs

The converter can be controlled through the following signals (continuous power control):


- voltage signal (terminals 3, 4)
- current signal (terminals 1, 2)
- $5 \text{ k}\Omega$ potentiometer (terminals 3, 4, 5) For this purpose, a 10 V source is provided on terminal 5. (switch settings are as for a 0 ... 10 V signal)

5.5.1 Combination of external potentiometer and electronic controller

Controller with current output

The voltage input (terminals 3, 4) in conjunction with the internal 10 V source and a 5 $k\Omega$ potentiometer is used as a manual control input.

Switch	Sa	S _b
Automatic mode	open	open
Manual mode	closed	closed

To prevent unintended oversteering when switching over to the manual mode, S_a should be mechanically linked to S_b . Otherwise both signals will briefly cumulate.

Controller with voltage output

Only the voltage input of the converter is used. Manual operation requires a 5 $k\Omega$ potentiometer connected to terminals 3 and 5.

Switch	S _c
Automatic mode	Position 1
Manual mode	Position 2

5.6 Firing pulse inhibit

The firing pulse inhibit function provides a simple way of switching to high power levels.

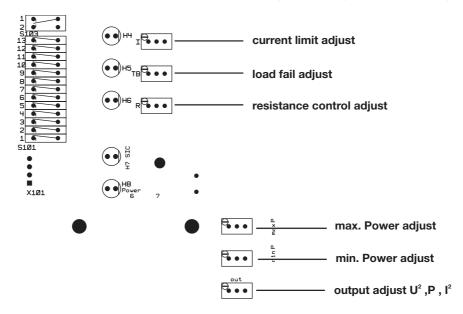
In order to be able to disconnect a system from the supply voltage, a circuit-breaker or main switch for all-pole disconnection must be wired into the supply feed!

If the output power is simply removed by inhibiting the firing pulses, this does not provide electrical isolation from the voltage supply! The terminals D or 1D may still carry dangerous voltage from the supply.

A contact between connections 6 and 7 can be used to switch off the load. The external contact can be a make or break contact, depending on the position of S105.

External contact	Internal switch S105	Response
Make (a)	Position 1	The load is permanently switched off when the contact is closed
Break (b)	Position 2	The load is permanently switched off when the contact is open

factory setting


Factory setting S105 is in position 1

5.7 Resistance output

When the converter is operating within rated limits, the resistance output has a voltage of $4 \dots 5 \text{ V}$.

5.8 Trimmer settings

The converter has 6 trimmers that can be adjusted by inserting a screwdriver blade (maximum blade width: 2 mm) through openings in the housing.

5.8.1 Resistance limiting (R-control)

The switch S101-10 can be used to activate a limiting of the output power depending on the resistance value R when operating Molybdenum Disilicid heating elements, to avoid overheating of the elements in the upper temperature range. Direct measurement of the resistance of the elements allows precise determination of the element temperature. When switch S101-10 is closed, the converter limits its output power as soon as the element resistance (the element temperature) is reached that was set by the trimmer for "resistance control adjust". In this manner, the heating element is protected from overheating. The "R-control" LED signals the active status of the resistance limiting.

Factory setting

The R-control trimmer is **not** factory-set. An appropriate adjustment must be carried out on site to set the maximum temperature limit for the heating element. This can be carried out with the aid of load voltage and current measurement (resistance measurement) or with the help of a thermal imaging camera.

A **true-rms meter** must be used for measuring voltage, power or current, because the load current is pulsating DC.

A meter calibrated for alternating current (AC) and sinusoidal waveforms will produce false readings!

5 Settings

The adjustment range of the resistance limiting can be set by the R-control trimmer between R_{Nom} and $10xR_{Nom}$.

R_{Nom} = nominal voltage / nominal current

Action	Response
Turn "resistance control" trimmer clockwise	Limiting at a higher resistance value (higher temperature)
Turn "resistance control" trimmer counter-clockwise	Limiting at a lower resistance value (lower temperature)

Factory setting S101-10 is open, R-control is inactive

5.8.2 SIC voltage reserve (SIC reserve)

When SIC heating elements are used, ageing of the elements is automatically compensated for when P-control is chosen for the subordinate control loop (Chapter 5.3).

The resistance of the SIC heating element increases with the operational time. The IPC converter adjusts the load voltage automatically to match the required power output. As soon as the maximum load voltage from the IPC is no longer sufficient to produce the required output power for the SIC heating element, this condition will be signaled by the "SIC reserve" LED. This indication appears time delayed after approx. 7 minutes.

The fault signal relay drops out at the same time.

The SIC reserve display as well as the fault signal function can be activated by opening the S101-12.

Factory setting S101-12 is closed, and the function is inactive.

5.8.3 Control input adjustment (max. Power adjust)

The "max. Power adjust" trimmer at the front can be used to adapt the power output of the converter to the maximum output signal of the controller connected before.

Action		Response
Turn the "max. Power adjust" trimmer (6	more power
Turn the "max. Power adjust" trimmer counter-clockwise	₹ Ø	less power

Factory setting

The trimmer is adjusted so that a 100% controller output signal produces the maximum load voltage (U² control is the factory setting for the subordinate control loop).

Correct measurement

A **true-rms meter** must be used for measuring voltage, power or current, because the load current is pulsating DC.

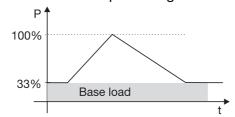
A meter calibrated for alternating current (AC) and sinusoidal waveforms will produce false readings!

5.8.4 Setting for maximum power (max. Power adjust)

- * Apply the maximum controller output signal
- * Turn the "max. Power adjust" trimmer clockwise or counter-clockwise until the required power is achieved.
- * Turning the "max. Power adjust" trimmer clockwise will increase the maximum power output.
- * Take care that the red "current limit" LED remains off, otherwise the circuit is operating in current limiting (current limit), which leaves turning the trimmer clockwise without effect, as the power output will not increase.

5.8.5 Input signal attenuation

* Turning the "max. Power adjust" trimmer counter-clockwise will decrease the maximum power output of the converter.


5.9 Setting the base load (min. Power adjust)

Base load setting

Open switch S11 to be able to set a base load.

Turning the "min. Power adjust" trimmer clockwise will increase the base load setting.

The settable range covers the complete range from 0 to 100%.

Example:

A heating system is operated with a base load set to 1/3. The remaining 2/3 of the power are regulated by the controller.

Correct measurement

A **true-rms meter** must be used for measuring voltage, power or current, because the load current is pulsating DC.

A meter calibrated for alternating current (AC) and sinusoidal waveforms will produce false readings!

Factory setting

S101-11 is closed, no base load is set

5.10 Setting the current limit (max. current adjust)

* The front "max. current adjust" trimmer can be used to limit the rms value of the load current over a range of 10 to 100% of the rated converter current.

1.5 clockwise turns correspond to increasing the response threshold by approx. 10% of the rated converter current.

Action				Response
	the "ma " trimmer of		Ø*	The current limit will increase
	the "ma " trimme vise		€0	The current limit will reduce

Correct measurement

A **true-rms meter** must be used for measuring voltage, power or current, because the load current is pulsating DC.

A meter calibrated for alternating current (AC) and sinusoidal waveforms will produce false readings!

The red "current limit" LED is on when current limiting is active.

Factory setting

The trimmer is set to the maximum rated current.

The activation of the current limit can also be used to operate the fault signal relay.

For this purpose, open switch S 101/13.

Factory setting: The activated current limit is only indicated by the red LED (S 101/13 closed)

⇒ Chapter 5.2 "Setting switches S101, S103, S104, S105, S106 and X106"

5.11 Total and partial load failure monitoring (load fail adjust)

Total and partial load failure monitoring for different types of load.

The factory setting of the converter is such that the total and partial load failure states can be detected for resistive loads and loads connected in series. For short-wave infrared radiators, turn switch S106 to position 2.

Factory setting

Switch S106 is in position 1

If the load resistance changes during operation, this will be detected by the partial load monitoring and indicated through the signal output.

The response threshold can be adjusted by the "load fail adjust" trimmer on the front panel (load fail adjust) between 20 and 100% of the rated converter current.

The smallest change in resistance that can be detected is 5 % of the nominal load resistance.

Factory setting

The trimmer is set to approx. 20 %.

The signal output provided is a floating contact or an optocoupler, depending on the extra code.

Type: relay

Type optocoupler

In the case of a load fault, the floating contact drops out, or the collectoremitter path of the optocoupler goes high-resistance.

The signal output is also active if the maximum temperature of the converter is exceeded (overheat), if the safety cut-out in the power section has been triggered or if the semiconductor fuse has blown (fuse).

The functions "SIC voltage reserve exhausted" or "Current limit active" can also be applied to the signal output if they are activated as described in the following sections:

- ⇒ Chapter 5.8.2 "SIC voltage reserve (SIC reserve)"
- ⇒ Chapter 5.10 "Setting the current limit (max. current adjust)"

⇒ Chapter 7 "Troubleshooting"

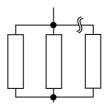
Jumper setting	Response	
1 1 1 2 3 1 4	Underload detection	
1 2 2 3 4	Overload detection	

factory setting

The total and partial load failure monitoring (underload) also allows overload monitoring. For this purpose, both jumpers on the pin strip X106 must be turned through 90°.

⇒ Chapter 5.2 "Setting switches S101, S103, S104, S105, S106 and X106"

5.11.1 Setting the load fault indication


The partial load setting must be made after the current limit has been set. If the current limit setting is changed, this will also affect the setting of the partial load fault detection.

This must be corrected accordingly, if necessary.

- * Connect the load
- * Provide a full control signal (e.g. 20 mA at the control input)
- * Adjust the "load fail adjust" trimmer such that the yellow "load fail" LED just extinguishes.
 - Turn clockwise = LED lights up
 - Turn counter-clockwise = LED extinguishes
- * If necessary, continue turning counter-clockwise to reduce the activation threshold. 1.5 turns of the potentiometer change the load current by approx. 10% of the converter rated current.

Alternative setting option:

To simulate a load fail, adjust the "load fail adjust" trimmer such that the yellow "load fail" LED lights up.

The smallest change in resistance that can be detected is 5 % of the nominal load resistance.

5.12 Safety cut-out in the power section (IGBT)

If there is a fault in the choke or the control electronics, the output voltage is switched off between terminals D and 1D.

However, terminals D and 1D may still carry dangerous voltage from the supply. They are not electrically isolated from the supply!

This state is indicated by the "IGBT" LED, and the fault signal relay drops out. This safety cut-out remains activated even when the fault has been remedied. It can only be reset by disconnecting the voltage supply.

* Switch the device off briefly, and then on again

5.13 Adjusting the output level signal (output adjust U^2 , P, I^2)

In the factory settings, the output level signal corresponds to the I^2 signal at the output of the converter. It is thus proportional to the power in the load (R=constant).

However, setting P or U² instead of the I² signals is also possible

⇒ Chapter 5.2 "Setting switches S101, S103, S104, S105, S106 and X106"

Power level output	Internal switches			
	S 4	S6		
U^2	1	0	0	
Р	0	1	0	
l ²	0	0	1	

Output adjust U², P, I²

The output level signal provides a voltage in the range of 0 to 10V (corresponding to 0 to 100% of the variable being measured). The trimmer "output adjust U^2 , P, I^2 " on the front panel can be used to set the required end value:

Action		Response
Turn "output adjust U ² , P , I ² " trimmer clockwise	Ø*	End value increases
Turn "output adjust U ² , P , I ² " trimmer counter-clockwise	• 0	End value reduces

5 Settings

6.1 Voltage supply

Voltage supply	115V AC +15%/-20% 48 63Hz		
Power section	230V AC +15%/-20% 48 63Hz		
	400V AC +15%/-20% 48 63Hz		
Voltage supply	115V AC +15%/-20% 48 63Hz, (only with 115V AC in the power		
Control section	section)		
	230V AC +15%/-20% 48 63Hz		
Power consumption, control section approx. 75 VA			
Load voltage U _{L rms}	20 V DC, 60 V, 90 V, 120 V, 150 V, 210 V \(\sigma \)		
Load current I _{L rms}	200A DC ∽		
Load type	Resistive loads		

6.2 Control

Control signal	$0 (4) \dots 20 \text{ mA} R_i = 50 \Omega$
	$0 (2) \dots 10V \qquad R_i = 25k\Omega$
	$0 (1) \dots 5V \qquad R_i = 12k\Omega$
	Manual control through an external 5 kΩ potentiometer
Input signal attenuation	Adjustment range 100 to 20%
Base load setting	0 100 %

6.3 Fault signal output

Relay (changeover contact)	150000 switching actions at a contact rating of 3A/230V 50Hz (resistive
without contact suppression	load)
Optocoupler output	$I_{Cmax} = 2 \text{ mA}, U_{CEOmax} = 32 \text{ V}$

6.4 General characteristics

Circuit variants	Single-phase operation
Operating modes	Amplitude control
Subordinate control	As standard: free choice between U ² -, P-, I ² control via internal switches
Current limiting	In operation, the load current can be set in the range of 10 \dots 100% I_N by a trimmer on the front panel. This limits the rms-value of the load current.
Partial load failure	20 100% of nominal current
R-control	Adjustment range from R _{Nom} to 10x R _{Nom} R _{Nom} = nominal voltage / nominal current
Power level output	As standard: free choice between U²-, P-, or I² signal via internal switches, adjustable 0 5V to 0 10V , $I_{max} \approx 2mA$, offset deviation: \le $\pm 5\%$

6 Technical data

Power loss P _{tot} (W)	It occurs in the form of thermal discharge at the cooling body of the power converter. Chapter 3.3 "Umgebungsbedingungen"				
	Power loss for IPC 200A, incl. choke and supply filter Ptot (W) = I Load(A) x power loss factor 9 8 400V supply voltage for power section 6 5 4 115V supply voltage for power section 230V supply voltage for power section 230V supply voltage for power section 24 115V supply voltage for power section 25 25 26 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20				
Control accuracy	The regulation will eliminate supply voltage variations within the tolerances range $(+15\%/-20\%)$ with an accuracy of $\pm 0.5\%$				
Electrical connection	Control leads via plug-in screw terminals for conductor cross-sections from				
protection rating	0.5 to 2.5 mm ² , in the power section via screw terminals 10 to 95 mm ² . IP 20 as per EN 60 529				
Protection class	Protection class I, with isolated control circuitry for connection to SELV circuits				
Permissible ambient temperature range	5 40°C (3K3 as per EN 60721-3-3)				
Permissible storage temperature range	-10 +70°C (1K3 as per EN 60 721-3-1)				
Cooling	forced convection, maximum inlet air temperature 35°C				
Climatic conditions	Rel. humidity ≤ 5 to 85 % annual average, no condensation 3K3 as per EN 60721				
Installation position	vertical				
Operating conditions	The converter is designed as a built-in device as per EN 50178 Pollution degree 2, overvoltage category Ü III				
Test voltage	as per EN 50178				
Creepage distances	Control section to load circuit ≥ 5.5 mm Control section to housing ≥ 5.5 mm The converter can be connected to SELV circuits. SELV = Separate Extra Low Voltage (safe low voltage)				
Earth leaking current	The earth leakage current of the IPC power converter used with an EMC filter in the supply cable is less than 3 mA (excluding any leakage current in the load).				
Housing	Metal housing				
Weight	approx. 22.5 kgs				

6.5 Choke data

Туре			Tightening torque for screw terminals	Weight	Sales No.
L = 0.6 mH / I_N = 200A protection rating IP 20 as per EN 60529	Height: 190 mm Width: 200 x 385mm	0000 111111	max. 1520 Nm	approx. 37 kgs	70/00436848

6.6 EMC filter

For voltage supply to power section						
Nominal voltage,	Dimensions	Connection	Tightening torque	Weight	Permissible	Sales
Nominal current	(length x width x height)	cross-section	for screw terminals		ambient temperature	No.
115V/250V/440V AC, I _{Nom} = 16A	(255 x 60 x 130) mm	0.254 mm ²	0.6 0.8 Nm	approx. 4 kgs	40°C	70/00399527
115V/250V/440V AC, I _{Nom} = 20A	(289 x 70 x 140) mm	0.510 mm ²	1.5 1.8 Nm	approx. 5.5 kgs	40°C	70/00438775
115V/250V/440V AC, I _{Nom} = 32A	(324 x 90 x 160) mm	0.510 mm ²	1.5 1.8 Nm	approx. 9.5 kgs	40°C	70/00409831
115V/250V/440V AC, I _{Nom} = 63A	(380 x 117 x 190) mm	0.516 mm ²	2 2.3 Nm	approx. 17 kgs	40°C	70/00409990
115V/250V/440V AC, I _{Nom} = 100A	(445 x 150 x 220) mm	1050 mm ²	6 8 Nm	approx. 26 kgs	40°C	70/00431997
For voltage supply to the control section						
115V/250V AC, I _{Nom} = 1A	(80 x 45 x 30) mm	via tab connector 6.3 x 0.8mm	-	approx. 120 g	40°C	70/00413620

^					
h	Tec	hn	100		19t9
u	ICC		IIGa	u	ala

What is happening?	Cause / Remedy	Information
Green power LED does not light up	Voltage supply to control section not connected	⇒ Chapter 4 "Electrical connection"
IPC is not producing any output power although green LED Power is lit and a setpoint value has been provided.	 Voltage supply to power section not connected 	⇔ Chapter 4.1 "Screw connections in the power section"
	Analog control input not connected correctly	⇒ Chapter 4.1.5 "Wiring of the screw terminals"
	 Switch positions for control input S 101/8 and 9 or S104 set incorrectly 	⇔ Chapter 5.5 "Control inputs"
	 Check switch for firing pulse inhibit S 105 	⇒ Chapter 5.6 "Firing pulse inhibit"
	- Load break	
	- Load short circuit ("current-limit" LED is lit)	
	* Check load and load connections	
IPC is not producing any	- Load break	
output power although green power LED is lit, a setpoint value is set and the load fail LED is lit.	 Load short circuit ("current-limit" LED is lit at the same time) 	
	* Check load and load connections	
	- Safety cut-out in the power section	⇒ Chapter 5.12 "Safety cut-out in the power section (IGBT)"
fuse LED is lit	 Semiconductor fuse blown by earth short in the power section/ 	⇒ Chapter 4.1.4 "Replacing the two semiconductor
	remedy wiring fault or earth short in the load	fuses"
IPC is not producing any output power although green power LED is lit, a setpoint value is set and the overheat LED is lit.	 Switch off caused by overheating (clogged or faulty fan) 	⇒ Chapter 3.3 "Ambient
	* Check the fan and replace, if necessary	conditions"
	- Insufficient supply of fresh air	
	- Inlet air temperature > 35°C	
	* Ensure sufficient ventilation	

7 Troubleshooting

What is happening?	Cause / Remedy	Information	
IPC does not produce full power, although	- Switch positions for control input S 101/8 and 9 or S104 set incorrectly	⇒ Chapter 5.5 "Control inputs"	
setpoint is set to 100%	 Control input (max. Power adjust) is not turned clockwise to the stop 	⇒ Chapter 5.8.3 "Control input	
	* Check adjustment	adjustment (max. Power adjust)"	
	- Current limiting active (when the red "current limit" LED is lit)	⇒ Chapter 5.10 "Setting the current	
	 Turn the "max. current adjust" trimmer clockwise 	limit (max. current adjust)"	
	- Resistance limiting (R-control) active	⇒ Chapter 5.2 "Setting	
	* Check switch S 101/10	switches S101, S103, S104, S105,	
	* Check switch S 103	S106 and X106"	
	* Check switch S 101/7		
IPC is producing power, although no setpoint	 Check switches S 101/8 and 9 or S104 for control input 	⇒ Chapter 5.5 "Control inputs"	
value is set	- Base load setting (max. Power adjust) is not turned counter-clockwise to the stop	⇒ Chapter 5.9 "Setting the base load (min.	
	* Check switch S 101/11	Power adjust)"	

_	_				
	Iroi	INIA	enc	otin	a
	1100		311 0		м

JUMO GmbH & Co. KG

Street address:

Moritz-Juchheim-Straße 1 36039 Fulda, Germany Delivery address: Mackenrodtstraße 14 36039 Fulda, Germany

Postal address:

36035 Fulda, Germany
Phone: +49 661 6003-0
Fax: +49 661 6003-607
e-mail: mail@jumo.net
Internet: www.jumo.net

JUMO Instrument Co. Ltd.

JUMO House
Temple Bank, Riverway
Harlow, Essex CM 20 2 TT, UK
Phone: +44 1279 635533
Fax: +44 1279 635262
e-mail: sales@jumo.co.uk
Internet: www.jumo.co.uk

JUMO Process Control, Inc.

8 Technology Boulevard Canastota, NY 13032, USA Phone: 315-697-JUMO 1-800-554-JUMO

Fax: 315-697-5867 e-mail: info@jumo.us Internet: www.jumo.us